Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 247
Filtrar
1.
Adv Sci (Weinh) ; 10(33): e2305096, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37845006

RESUMEN

Despite advances in precision oncology, cancer remains a global public health issue. In this report, proof-of-principle evidence is presented that a cell-penetrable peptide (ACP52C) dissociates transcription factor CP2c complexes and induces apoptosis in most CP2c oncogene-addicted cancer cells through transcription activity-independent mechanisms. CP2cs dissociated from complexes directly interact with and degrade YY1, leading to apoptosis via the MDM2-p53 pathway. The liberated CP2cs also inhibit TDP2, causing intrinsic genome-wide DNA strand breaks and subsequent catastrophic DNA damage responses. These two mechanisms are independent of cancer driver mutations but are hindered by high MDM2 p60 expression. However, resistance to ACP52C mediated by MDM2 p60 can be sensitized by CASP2 inhibition. Additionally, derivatives of ACP52C conjugated with fatty acid alone or with a CASP2 inhibiting peptide show improved pharmacokinetics and reduced cancer burden, even in ACP52C-resistant cancers. This study enhances the understanding of ACP52C-induced cancer-specific apoptosis induction and supports the use of ACP52C in anticancer drug development.


Asunto(s)
Proteínas de Unión al ADN , Neoplasias , Humanos , Proteínas de Unión al ADN/genética , Neoplasias/genética , Mutaciones Letales Sintéticas , Medicina de Precisión , Factores de Transcripción/genética , Péptidos , Hidrolasas Diéster Fosfóricas/genética
2.
EMBO Rep ; 24(8): e56335, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37341560

RESUMEN

While there is growing evidence that many epigenetically silenced genes in cancer are tumour suppressor candidates, their significance in cancer biology remains unclear. Here, we identify human Neuralized (NEURL), which acts as a novel tumour suppressor targeting oncogenic Wnt/ß-catenin signalling in human cancers. The expression of NEURL is epigenetically regulated and markedly suppressed in human colorectal cancer. We, therefore, considered NEURL to be a bona fide tumour suppressor in colorectal cancer and demonstrate that this tumour suppressive function depends on NEURL-mediated oncogenic ß-catenin degradation. We find that NEURL acts as an E3 ubiquitin ligase, interacting directly with oncogenic ß-catenin, and reducing its cytoplasmic levels in a GSK3ß- and ß-TrCP-independent manner, indicating that NEURL-ß-catenin interactions can lead to a disruption of the canonical Wnt/ß-catenin pathway. This study suggests that NEURL is a therapeutic target against human cancers and that it acts by regulating oncogenic Wnt/ß-catenin signalling.


Asunto(s)
Neoplasias del Colon , beta Catenina , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Vía de Señalización Wnt , Neoplasias del Colon/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas con Repetición de beta-Transducina/genética , Proteínas con Repetición de beta-Transducina/metabolismo , Línea Celular Tumoral
3.
Yonsei Med J ; 64(3): 157-166, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36825341

RESUMEN

PURPOSE: Glioblastoma (GBM) is one of the most lethal human tumors with a highly infiltrative phenotype. Our previous studies showed that GBM originates in the subventricular zone, and that tumor-derived mesenchymal stem-like cells (tMSLCs) promote the invasiveness of GBM tumorspheres (TSs). Here, we extend these studies in terms of ventricles using several types of GBM patient-derived cells. MATERIALS AND METHODS: The invasiveness of GBM TSs and ventricle spheres (VSs) were quantified via collagen-based 3D invasion assays. Gene expression profiles were obtained from microarray data. A mouse orthotopic xenograft model was used for in vivo experiments. RESULTS: After molecular and functional characterization of ventricle-derived mesenchymal stem-like cells (vMSLCs), we investigated the effects of these cells on the invasiveness of GBM TSs. We found that vMSLC-conditioned media (CM) significantly accelerated the invasiveness of GBM TSs and VSs, compared to the control and even tMSLC-CM. Transcriptome analyses revealed that vMSLC secreted significantly higher levels of several invasiveness-associated cytokines. Moreover, differentially expressed genes between vMSLCs and tMSLCs were enriched for migration, adhesion, and chemotaxis-related gene sets, providing a mechanistic basis for vMSLC-induced invasion of GBM TSs. In vivo experiments using a mouse orthotopic xenograft model confirmed vMSLC-induced increases in the invasiveness of GBM TSs. CONCLUSION: Although vMSLCs are non-tumorigenic, this study adds to our understanding of how GBM cells acquire infiltrative features by vMSLCs, which are present in the region where GBM genesis originates.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Animales , Humanos , Glioblastoma/genética , Glioblastoma/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Invasividad Neoplásica/genética , Modelos Animales de Enfermedad , Línea Celular Tumoral , Células Madre Neoplásicas/metabolismo
4.
Adv Mater ; 35(13): e2208184, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36601963

RESUMEN

Mechanically stretchable strain sensors gain tremendous attention for bioinspired skin sensation systems and artificially intelligent tactile sensors. However, high-accuracy detection of both strain intensity and direction with simple device/array structures is still insufficient. To overcome this limitation, an omnidirectional strain perception platform utilizing a stretchable strain sensor array with triangular-sensor-assembly (three sensors tilted by 45°) coupled with machine learning (ML) -based neural network classification algorithm, is proposed. The strain sensor, which is constructed with strain-insensitive electrode regions and strain-sensitive channel region, can minimize the undesirable electrical intrusion from the electrodes by strain, leading to a heterogeneous surface structure for more reliable strain sensing characteristics. The strain sensor exhibits decent sensitivity with gauge factor (GF) of ≈8, a moderate sensing range (≈0-35%), and relatively good reliability (3000 stretching cycles). More importantly, by employing a multiclass-multioutput behavior-learned cognition algorithm, the stretchable sensor array with triangular-sensor-assembly exhibits highly accurate recognition of both direction and intensity of an arbitrary strain by interpretating the correlated signals from the three-unit sensors. The omnidirectional strain perception platform with its neural network algorithm exhibits overall strain intensity and direction accuracy around 98% ± 2% over a strain range of ≈0-30% in various surface stimuli environments.

5.
J Cancer Res Clin Oncol ; 149(8): 4391-4402, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36107247

RESUMEN

PURPOSE: Advancements in photodynamic diagnosis (PDD) and photodynamic therapy (PDT) as a standard care in cancer therapy have been limited. This study is aimed to investigate the clinical availability of 5-aminolevulinic acid (5-ALA)-based PDD and PDT in glioblastoma (GBM) patient-derived tumorspheres (TSs) and mouse orthotopic xenograft model. METHODS: PDT was performed using a 635 nm light-emitting diode (LED). Transcriptome profiles were obtained from microarray data. For knockdown of C5α, siRNA was transfected into tumor mesenchymal stem-like cells (tMSLCs). The invasiveness of TSs was quantified using collagen-based 3D invasion assays. RESULTS: Treatment with 1 mM 5 ALA induced distinct protoporphyrin IX (PpIX) fluorescence in GBM TSs, but not in non-tumor cells or tissues, including tMSLCs. These observations were negatively correlated with the expression levels of FECH, which catalyzes the conversion of accumulated PpIX to heme. Furthermore, the 5-ALA-treated GBM TSs were sensitive to PDT, thereby significantly decreasing cell viability and invasiveness. Notably, the effects of PDT were abolished by culturing TSs with tMSLC-conditioned media. Transcriptome analysis revealed diverse tMSLC-secreted chemokines, including C5α, and their correlations with the expression of stemness- or mesenchymal transition-associated genes. By adding or inhibiting C5α, we confirmed that acquired resistance to PDT was induced via tMSLC-secreted C5α. CONCLUSIONS: Our results show substantial therapeutic effects of 5-ALA-based PDT on GBM TSs, suggesting C5α as a key molecule responsible for PDT resistance. These findings could trigger PDT as a standard clinical modality for the treatment of GBM.


Asunto(s)
Glioblastoma , Fotoquimioterapia , Humanos , Animales , Ratones , Ácido Aminolevulínico/farmacología , Ácido Aminolevulínico/uso terapéutico , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/patología , Fotoquimioterapia/métodos , Línea Celular Tumoral , Protoporfirinas/farmacología , Protoporfirinas/metabolismo , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico
8.
Clin Transl Med ; 12(8): e997, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35908277

RESUMEN

BACKGROUND: The biological function of mesenchymal stem-like cells (MSLCs), a type of stromal cells, in the regulation of the tumour microenvironment is unclear. Here, we investigated the molecular mechanisms underlying extracellular matrix (ECM) remodelling and crosstalk between MSLCs and glioblastomas (GBMs) in tumour progression. METHODS: In vitro and in vivo co-culture systems were used to analyze ECM remodelling and GBM infiltration. In addition, clinical databases, samples from patients with GBM and a xenografted mouse model of GBM were used. RESULTS: Previous studies have shown that the survival of patients with GBM from whom MSLCs could be isolated is substantially shorter than that of patients from whom MSLCs could not be isolated. Therefore, we determined the correlation between changes in ECM-related gene expression in MSLC-isolatable patients with that in MSLC non-isolatable patients using gene set enrichment analysis (GSEA). We found that lysyl oxidase (LOX) and COL1A1 expressions increased in MSLCs via GBM-derived clusters of differentiation 40 ligand (CD40L). Mechanistically, MSLCs are reprogrammed by the CD40L/CD40/NFκB2 signalling axis to build a tumour infiltrative microenvironment involving collagen crosslinking. Importantly, blocking of CD40L by a neutralizing antibody-suppressed LOX expression and ECM remodelling, decreasing GBM infiltration in mouse xenograft models. Clinically, high expression of CD40L, clusters of differentiation 40 (CD40) and LOX correlated with poor survival in patients with glioma. This indicated that GBM-educated MSLCs promote GBM infiltration via ECM remodelling in the tumour microenvironment. CONCLUSION: Our findings provide mechanistic insights into the pro-infiltrative tumour microenvironment produced by GBM-educated MSLCs and highlight a potential therapeutic target that can be used for suppressing GBM infiltration.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Ligando de CD40/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Ratones , Microambiente Tumoral
9.
Cell Death Discov ; 8(1): 271, 2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35614051

RESUMEN

Breast cancer is the most common type of cancer in women, and approximately 70% of all breast cancer patients use endocrine therapy, such as estrogen receptor modulators and aromatase inhibitors. In particular, triple-negative breast cancer (TNBC) remains a major threat due to the lack of targeted treatment options and poor clinical outcomes. Here, we found that GPR110 was highly expressed in TNBC and GPR110 plays a key role in TNBC progression by engaging the RAS signaling pathway (via Gαs activation). High expression of GPR110 promoted EMT and CSC phenotypes in breast cancer. Consequently, our study highlights the critical role of GPR110 as a therapeutic target and inhibition of GPR110 could provide a therapeutic strategy for the treatment of TNBC patients.

10.
Cell Death Dis ; 13(4): 417, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35487888

RESUMEN

Colorectal cancer (CRC) has a 5-year survival rate of <10%, as it can metastasize to the lungs and liver. Anticancer drugs and targeted therapies used to treat metastatic colorectal cancer have insufficient therapeutic efficacy and are associated with complications. Therefore, research to develop new targeted therapeutics is necessary. Here, we present a novel discovery that intracellular adhesion molecule-1 (ICAM-1) is a potential therapeutic target to enhance therapeutic effectiveness for CRC. ICAM-1 is an important regulator of cell-cell interactions and recent studies have shown that it promotes malignancy in several carcinomas. However, little is known about its effect on CRC. Therefore, we conducted a study to define the mechanism by which ICAM-1 acts. ICAM-1 is phosphorylated by tyrosine-protein kinase Met (c-MET), and phosphorylated ICAM-1 can interact with SRC to increase SRC activity. Consequently, ICAM-1 may further accelerate SRC signaling, promoting the malignant potential of cancer. In addition, treatment with antibodies targeting ICAM-1 showed excellent therapeutic effects in reducing metastasis and angiogenesis. These findings suggest for the first time that ICAM-1 is an important adapter protein capable of mediating the c-MET-SRC signaling axis. Therefore, ICAM-1 can be used as a novel therapeutic target and a metastatic marker for CRC.


Asunto(s)
Antineoplásicos , Neoplasias del Colon , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Humanos , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/metabolismo , Transducción de Señal
11.
Adv Sci (Weinh) ; 9(2): e2102768, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34813169

RESUMEN

Despite aggressive clinical treatment, recurrence of glioblastoma multiforme (GBM) is unavoidable, and the clinical outcome is still poor. A convincing explanation is the phenotypic transition of GBM cells upon aggressive treatment such as radiotherapy. However, the microenvironmental factors contributing to GBM recurrence after treatment remain unexplored. Here, it is shown that radiation-treated GBM cells produce soluble intercellular adhesion molecule-1 (sICAM-1) which stimulates the infiltration of macrophages, consequently enriching the tumor microenvironment with inflammatory macrophages. Acting as a paracrine factor, tumor-derived sICAM-1 induces macrophages to secrete wingless-type MMTV integration site family, member 3A (WNT3A), which promotes a mesenchymal shift of GBM cells. In addition, blockade of either sICAM-1 or WNT3A diminishes the harmful effect of radiation on tumor progression. Collectively, the findings indicate that cellular crosstalk between GBM and macrophage through sICAM-1-WNT3A oncogenic route is involved in the mesenchymal shift of GBM cells after radiation, and suggest that radiotherapy combined with sICAM-1 targeted inhibition would improve the clinical outcome of GBM patients.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/metabolismo , Macrófagos/metabolismo , Mesodermo/metabolismo , Animales , Neoplasias Encefálicas/genética , Modelos Animales de Enfermedad , Glioblastoma/genética , Humanos , Masculino , Ratones , Ratones Desnudos
12.
Invest Ophthalmol Vis Sci ; 62(15): 24, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34935881

RESUMEN

Purpose: To investigate translatory movement during the lateral gaze in patients with horizontal strabismus using magnetic resonance imaging. Methods: Patients with esotropia or exotropia and normal controls underwent orbital magnetic resonance imaging during the central gaze and lateral gaze at 40°. The position of the static tissues was superimposed three-dimensionally for all gazes using a self-developed software, allowing the analysis of the net eyeball movement. Then, the eyeball centroid coordinates were extracted for each gaze, and the distance and direction of centroid movement from the central to lateral gaze were calculated. Results: The mean distance ± standard deviation of the centroid movement was 1.0 ± 0.5 mm during abduction in the exotropia group, which was significantly longer than that in the esotropia (0.6 ± 0.3 mm; P = 0.003) and control (0.7 ± 0.2 mm; P = 0.002) groups. Conversely, the centroid moved farther in the esotropia group (0.9 ± 0.3 mm) than the exotropia (0.6 ± 0.3 mm; P = 0.005) and control (0.7 ± 0.2 mm; P = 0.023) groups during adduction. Posterior translation during abduction was longer in the exotropia group (-0.8 ± 0.3 mm) compared with the esotropia (-0.5 ± 0.3 mm; P = 0.017) and control (-0.4 ± 0.3 mm; P = 0.001) groups, whereas that during adduction was longer in the esotropia group (-0.4 ± 0.4 mm) than the exotropia (-0.1 ± 0.2 mm; P = 0.033) and control (-0.1 ± 0.2 mm; P = 0.026) groups. Conclusions: During abduction, more translatory movement occurred in the exotropia group, whereas the centroid moved farther in the esotropia group during adduction. The translatory movement difference between both strabismus groups implies that there is a difference in biomechanics among the types of strabismus.


Asunto(s)
Esotropía/fisiopatología , Exotropía/fisiopatología , Movimientos Oculares/fisiología , Músculos Oculomotores/fisiología , Adolescente , Adulto , Fenómenos Biomecánicos , Ojo/diagnóstico por imagen , Femenino , Fijación Ocular/fisiología , Humanos , Imagenología Tridimensional , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Músculos Oculomotores/diagnóstico por imagen , Estudios Prospectivos , Adulto Joven
13.
Cell Rep ; 37(8): 109996, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34818544

RESUMEN

Triple-negative breast cancers (TNBCs) are characterized by high rates of recurrence and poor clinical outcomes. Deregulated E3 ligases are involved in breast cancer pathogenesis and progression, but the underlying mechanisms are unclear. Here, we find that F-box and leucine-rich repeat protein 16 (FBXL16) acts as a tumor suppressor in TNBCs. FBXL16 directly binds to HIF1α and induces its ubiquitination and degradation, regardless of the tumor microenvironment, resulting in blockade of the HIF1α-mediated epithelial-mesenchymal transition (EMT) and angiogenesis features of breast cancer. In TNBCs, FBXL16 expression is downregulated by the p38/miR-135b-3p axis, and loss of FBXL16 expression restores HIF1α-mediated metastatic features of breast cancer. Low expression of FBXL16 is associated with high-grade and lymph node-positive tumors and poor overall survival of breast cancer. Taken together, these findings demonstrate that modulation of FBXL16 expression may offer a favorable strategy for treatment of patients with metastatic breast cancer, including TNBCs.


Asunto(s)
Neoplasias de la Mama/genética , Proteínas F-Box/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Animales , Biomarcadores de Tumor , Mama , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Progresión de la Enfermedad , Transición Epitelial-Mesenquimal/genética , Proteínas F-Box/metabolismo , Femenino , Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/genética , Genes Supresores de Tumor/fisiología , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Proteínas Repetidas Ricas en Leucina/metabolismo , Ratones , Ratones Endogámicos NOD , MicroARNs/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Microambiente Tumoral/genética
14.
Int J Mol Sci ; 22(20)2021 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-34681583

RESUMEN

Radiation therapy is a current standard-of-care treatment and is used widely for GBM patients. However, radiation therapy still remains a significant barrier to getting a successful outcome due to the therapeutic resistance and tumor recurrence. Understanding the underlying mechanisms of this resistance and recurrence would provide an efficient approach for improving the therapy for GBM treatment. Here, we identified a regulatory mechanism of CD44 which induces infiltration and mesenchymal shift of GBM. Ionizing radiation (IR)-induced K-RAS/ERK signaling activation elevates CD44 expression through downregulation of miR-202 and miR-185 expression. High expression of CD44 promotes SRC activation to induce cancer stemness and EMT features of GBM cells. In this study, we demonstrate that the K-RAS/ERK/CD44 axis is a key mechanism in regulating mesenchymal shift of GBM cells after irradiation. These findings suggest that blocking the K-RAS activation or CD44 expression could provide an efficient way for GBM treatment.


Asunto(s)
Neoplasias Encefálicas/patología , Glioblastoma/patología , Receptores de Hialuranos/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Radiación Ionizante , Transducción de Señal/efectos de la radiación , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidad , Línea Celular Tumoral , Movimiento Celular/efectos de la radiación , Regulación hacia Abajo/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Glioblastoma/metabolismo , Glioblastoma/mortalidad , Humanos , Receptores de Hialuranos/antagonistas & inhibidores , Receptores de Hialuranos/genética , Estimación de Kaplan-Meier , MicroARNs/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo
15.
Sci Rep ; 11(1): 17750, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34493772

RESUMEN

Lineage tracing in mice indicates that LGR5 is an adult stem cell marker in multiple organs, such as the intestine, stomach, hair follicles, ovary, and mammary glands. Despite many studies exploring the presence of LGR5 cells in human tissues, little is known about its expression profile in either human mammary tissue or pathological lesions. In this study we aim to investigate LGR5 expression in normal, benign, and malignant lesions of the human breast using RNA in situ hybridization. LGR5 expression has not been observed in normal lactiferous ducts and terminal duct lobular units, whereas LGR5-positive cells have been specifically observed in the basal myoepithelium of ducts in the regenerative tissues, ductal carcinoma in situ, and in ducts surrounded by invasive cancer cells. These findings suggest LGR5 marks facultative stem cells that are involved in post injury regeneration instead of homeostatic stem cells. LGR5 positivity was found in 3% (9 of 278 cases) of invasive breast cancers (BC), and it showed positive associations with higher histologic grades (P = 0.001) and T stages (P < 0.001), while having negative correlations with estrogen receptor (P < 0.001) and progesterone receptor (P < 0.001) expression. Remarkably, all LGR5-positive BC, except one, belong to triple-negative BC (TNBC), representing 24% (9 of 38 cases) of all of them. LGR5 histoscores have no correlations with EGFR, CK5/6, Ki-67, or P53 expression. Additionally, no ß-catenin nuclear localization was observed in LGR5-positive BC, indicating that canonical Wnt pathway activation is less likely involved in LGR5 expression in BC. Our results demonstrate that LGR5 expression is induced in regenerative conditions in the myoepithelium of human mammary ducts and that its expression is only observed in TNBC subtype among all invasive BC. Further studies regarding the functional and prognostic impact of LGR5 in TNBC are warranted.


Asunto(s)
Mama/metabolismo , Células Epiteliales/metabolismo , Proteínas de Neoplasias/biosíntesis , Receptores Acoplados a Proteínas G/biosíntesis , Neoplasias de la Mama Triple Negativas/metabolismo , Adulto , Anciano , Mama/citología , Mama/fisiología , Enfermedades de la Mama/genética , Enfermedades de la Mama/metabolismo , Carcinoma/genética , Carcinoma/metabolismo , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/metabolismo , Carcinoma Intraductal no Infiltrante/genética , Carcinoma Intraductal no Infiltrante/metabolismo , Femenino , Fibroadenoma/genética , Fibroadenoma/metabolismo , Humanos , Hibridación in Situ , Persona de Mediana Edad , Proteínas de Neoplasias/genética , Papiloma Intraductal/genética , Papiloma Intraductal/metabolismo , Tumor Filoide/genética , Tumor Filoide/metabolismo , ARN Mensajero/biosíntesis , ARN Neoplásico/biosíntesis , Receptores Acoplados a Proteínas G/genética , Regeneración/genética , Neoplasias de la Mama Triple Negativas/genética
16.
Transl Vis Sci Technol ; 10(11): 20, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34570191

RESUMEN

Purpose: To evaluate the eyeball rotation during lateral gaze in patients with intermittent exotropia (IXT) using three-dimensional magnetic resonance imaging (MRI). Methods: In this prospective observational study, patients with IXT (n = 29) underwent orbital MRI during central, right, and left gazes. Fixation targets were placed at a 40° angle for lateral gaze. After acquisition of MR images, the position of the static tissues other than the eyeball in the MR images were matched three-dimensionally. The optical axis was defined as the perpendicular line to its lens passing through the corneal vertex. The rotation angle was measured as the angle between optical axes in central gaze and lateral gaze using ImageJ. A difference of 3° or more in the rotational angle between both eyes was considered a significant difference. Results: Eight patients (26.7%) had a larger adduction angle than the abduction angle of the fellow eye and six patients (20.0%) showed a smaller adduction angle during lateral gaze on at least one side. There was no significant factor associated with the pattern of rotation. Conclusions: Almost one-half of the patients with IXT had significant difference in the rotation angle between both eyes during lateral gaze. Measurement of the rotation angle during lateral gaze using MRI showed that IXT is not a perfectly comitant disturbance of gaze in some subjects. Translational Relevance: Quantitative analysis for eye movements using MRI can provide useful information for physiologic mechanism and proper surgical planning in patients with IXT.


Asunto(s)
Exotropía , Exotropía/diagnóstico por imagen , Movimientos Oculares , Humanos , Imagen por Resonancia Magnética , Músculos Oculomotores/diagnóstico por imagen , Rotación
17.
Mol Ther Oncolytics ; 22: 368-379, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34553025

RESUMEN

Bcl-w, a member of the Bcl-2 family, is highly expressed in various solid tumor, including lung cancer, suggesting that it is involved in cancer cell survival and carcinogenesis. Solid cancer-induced hypoxia has been reported to increase angiogenesis, growth factor, gene instability, invasion, and metastasis. Despite many studies on the treatment of non-small cell lung cancer (NSCLC) with a high incidence rate, the survival rate of patients has not improved because the cancer cells acquired resistance to treatment. This study investigated the correlation between Bcl-w expression and hypoxia in tumor malignancy of NSCLC. Meanwhile, microRNAs (miRNAs) are involved in a variety of key signaling mechanisms associated with hypoxia. Therefore, we discovered miR-519d-3p, which inhibits the expression of Bcl-w and hypoxia-inducing factor (HIF)-1α, and found that it reduces hypoxia-induced tumorigenesis. Spearman's correlation analysis showed that the expression levels of miR-519d-3p and Bcl-w/HIF-1α were negatively correlated, respectively. This showed that miR-519d-3p can be used as a diagnostic biomarker and target therapy for NSCLC.

18.
Yonsei Med J ; 62(10): 936-942, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34558873

RESUMEN

PURPOSE: A critical indicator of the overall survival of patients with high-grade glioma is the successful isolation of tumor mesenchymal stem-like cells (tMSLCs), which play important roles in glioma progression. However, attempts to isolate tMSLCs from surgical specimens have not always been successful, and the reasons for this remain unclear. Considering that the amount of surgical high-grade glioma specimens varies, we hypothesized that larger surgical specimens would be better for tMSLC isolation. MATERIALS AND METHODS: We assessed 51 fresh, high-grade glioma specimens and divided them into two groups according to the success or failure of tMSLC isolation. The success of tMSLC isolation was confirmed by plastic adherence, presenting antigens, tri-lineage differentiation, and non-tumorigenicity. Differences in characteristics between the two groups were tested using independent two sample t-tests, chi-square tests, or Kaplan-Meier survival analysis. RESULTS: The mean specimen weights of the groups differed from each other (tMSLC-negative group: 469.9±341.9 mg, tMSLC positive group: 546.7±618.9 mg), but the difference was not statistically significant. The optimal cut-off value of specimen weight was 180 mg, and the area under the curve value was 0.599. CONCLUSION: Our results suggested a minimum criterion for specimen collection, and found that the specimen amount was not deeply related to tMSLC detection. Collectively, our findings imply that the ability to isolate tMSLCs is determined by factors other than the specimen amount.


Asunto(s)
Neoplasias Encefálicas , Glioma , Células Madre Mesenquimatosas , Diferenciación Celular , Humanos , Células Madre Neoplásicas
19.
Mol Ther Nucleic Acids ; 25: 127-142, 2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34457998

RESUMEN

Breast cancer is the most common female cancer in the world. Despite the active research on metastatic breast cancer, the treatment of breast cancer patients is still difficult because the mechanism is not well known. Therefore, research on new targets and mechanisms for diagnosis and treatment of breast cancer patients is required. On the other hand, microRNA (miRNA) has the advantage of simultaneously regulating the expression of many target genes, so it has been proposed as an effective biomarker for the treatment of various diseases including cancer. This study analyzed the role and mechanism of DBC2 (deleted in breast cancer 2), which is known to inhibit its expression in breast cancer, and proposed microRNA (miR)-5088-5p, which regulates its expression. It was revealed that the biogenesis of miR-5088-5p was upregulated by hypomethylation of its promoter, promoted by Fyn, and was involved in malignancy in breast cancer. With the use of the cellular level, clinical samples, and published data, we verified that the expression patterns of DBC2 and miR-5088-5p were negatively related, suggesting the potential as novel biomarkers for the diagnosis of breast cancer patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...